If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+115x+2880=0
a = 1; b = 115; c = +2880;
Δ = b2-4ac
Δ = 1152-4·1·2880
Δ = 1705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(115)-\sqrt{1705}}{2*1}=\frac{-115-\sqrt{1705}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(115)+\sqrt{1705}}{2*1}=\frac{-115+\sqrt{1705}}{2} $
| 2d^2+10d-600=0 | | 4x+9=11,x= | | 6(x+3)+4=x+4=2x | | 3/7x+3=9 | | 3/7•x+3=9 | | E^5p-8+3=15 | | 2/3u-6/5=-5/4 | | 4x-5=8x-17 | | 3(3x-7)/2=30 | | m=∞(4,5) | | 30=16=x/5 | | 4a-9=3+9 | | m=0B(8,5) | | m=0(8,5) | | m=1(4,-5) | | 6=-6(w+8) | | 390=2(5)+2(x) | | m=-8/3(4,-6) | | m=-8/3(4,-5) | | 3(p-8)=15 | | m=-6(3/2,1/4) | | m=7(2,-4) | | 1.6+0.2x=0.8 | | -4g-7=41 | | m=-3(-4,9) | | 6y²–6y=12 | | -0.3x+2.55=-0.8x+3.49 | | 2y+2=41 | | m=-1/2(-7,5) | | m=-1/2P(-7,5) | | 2x+8-4x=3x-3 | | |9-x|-6=5 |